

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA 533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

III Year - II Semester		L	T	P	C
		3	0	0	3
DESIGN OF MACHINE MEMBERS-II					

Course objectives:

- 1) To gain knowledge about the design of bearings.
- 2) To understand the concepts in designing various engine parts.
- 3) To gain knowledge to design curved beams and power screws.
- 4) To understand power transmission systems and to design pulleys and gear drives.
- 5) To understand the concepts in designing various machine tool elements.

UNIT-I:

BEARINGS: Classification of bearings- applications, types of journal bearings – lubrication – bearing modulus – full and partial bearings – clearance ratio – heat dissipation of bearings, bearing materials – journal bearing design – ball and roller bearings static loading of ball & roller bearings, bearing life.

UNIT-II:

ENGINE PARTS: Connecting Rod: Thrust in connecting rod – stress due to whipping action on connecting rod ends – cranks and crank shafts, strength and proportions of over hung and center cranks – crank pins, crank shafts.

Pistons, forces acting on piston construction design and proportions of piston, cylinder, cylinder liners,

UNIT-III:

DESIGN OF CURVED BEAMS: introduction, stresses in curved beams, expression for radius of neutral axis for rectangular, circular, trapezoidal and t-section, design of crane hooks, c clamps. **DESIGN OF POWER SCREWS:** Design of screw, square ACME, buttress screws, design of nut, compound screw, differential screw, ball screw- possible failures.

UNIT-IV:

POWER TRANSMISSIONS SYSTEMS, PULLEYS: Transmission of power by belt and rope drives, transmission efficiencies, belts – flat and V types – ropes - pulleys for belt and rope drives, materials, chain drives

SPUR & HELICAL GEAR DRIVES: Spur gears- helical gears – load concentration factor – dynamic load factor, surface compressive strength – bending strength – design analysis of spur gears – estimation of centre distance, module and face width, check for plastic deformation, check for dynamic and wear considerations.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA 533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

UNIT-V:

MACHINE TOOL ELEMENTS: Levers and brackets: design of levers – hand levers-foot lever – cranked lever – lever of a lever loaded safety valve- rocker arm straight – angular- design of a crank pin – brackets- hangers- wall boxes.

Wire Ropes: Construction, Designation, Stresses in wire ropes, rope sheaves and drums.

Note: Design data book is permitted for examination

TEXT BOOKS:

- 1. Machine Design/ V. Bhandari/TMH Publishers
- 2. Machine Design/ NC Pandya & CS Shaw/ Charotar publishers

REFERENCES:

- 1. Machine Design: An integrated Approach / R.L. Norton / Pearson Education
- 2. Mech. Engg. Design / JE Shigley/Tata McGraw Hill education
- 3. Design of machine elements- spots/Pearson Publications
- 4. Machine Design-Norton/Pearson Publications.

Course Outcomes: At the end of the course, student will be able to

CO1: Apply knowledge about the design of bearings.

CO2: Explain the concepts in designing various engine parts.

CO3: Utilize the knowledge to design curved beams and power screws.

CO4: Justify power transmission systems and to design pulleys and gear drives.

CO5: Apply the concepts in designing various machine tool elements.